
JOURNAL OF APPLIED ELECTROCHEMISTRY 9 (1979) 537-543 

The application of pulsed potential and pulsed current 
to a rotating disc electrode system 
K. V I S W A N A T H A N ,  H. Y. CHEH 

Department  o f  Chemical Engineering and Applied Chemistry, Columbia University, 
N e w  York, N e w  York 10027, USA 

Received 24 July 1978 

This paper is concerned with mass transfer to a rotating disc electrode (RDE) under pulsed potential 
and pulsed current conditions. For the case of pulsed potential, a numerical solution is presented to 
calculate the instantaneous current density for intermediate and large cycle times and an asymptotic 
solution for short cycle times. The special case of applying a step potential is then presented. The 
magnitude of the step current for a given transition time is calculated from the numerical solution by 
Viswanathan et al. for the pulsed current case. Comparison is made between the present results and 
various approximate solutions from the literature. 

Nomenclature 

C~,Cn~,Cn~ 
D 
F 
i 

iave 

c concentration of reacting ion 
ci, c= interracial concentration and bulk 

concentration, respectively 
C dimensionless concentration 

defined in Equation 11 

coefficients of an infinite series 
diffusion coefficient of reacting ion 
Faraday's constant 
current density 
average current density over the 
entire cycle 

(idc)l d.c. limiting current density 
/step step current density 

K dimensionless velocity defined in 
Equation 11 

K n defined in Equation A5 
n number of electrons transferred 

R n dimensionless concentration as a 
function of ~" 

t time 
tn defined in Fig. 1 
ttr transition time 
Vz axial velocity 

z axial co-ordinate 
c~ a dummy variable 

/3n defined in Equation 20 

Xn,, X~ 2 
~n 

7 

TI, Tc, Tgr 

thickness of the Nernst diffusion 
layer 
dimensionless axial co-ordinate 
defined in Equation 12 
eigenvalues 
defined in Equation 29 
dimensionless time defined in 
Equation 12 
dimensionless on-period, cycle 
period and transition time 
respectively 
a function of axial co-ordinate 
defined in Equation A4 

1. Introduction 

The application of pulsed potential and pulsed 
current to practical systems has generated a 
considerable amount of interest in recent years. 
For instance, Despic and Popov [1] studied mass 
transfer under pulsed potential conditions in the 
absence of convection. Cheh [2] reported the 
application of pulsed current to gold electro- 
deposition. Sullivan [3] and Chen and Sautter [4] 
deposited cobalt under pulsed current conditions. 
Pavlovic et al. [5], Popov et al. [6] and lbl et al. 
[7] studied the morphology of  electrodeposits 
under pulsed conditions. Pulsed electrodeposition 
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of copper was reported by Popov et  al. [8] and 
more recently by Wan et  al. [9]. 

Theoretical analyses of pulsed electrolysis were 
also reported in the recent literature. Popov et  al. 

[8] studied mass transfer under pulsed conditions 
in both stirred and unstirred solutions. For the 
special case of applying a step potential to a RDE, 
there are a number of  available approximate 
solutions. Filinovskii and Kiryanov [10] simplified 
their analysis by dropping the highest.order 
convective term. Buck and Keller [11 ] obtained 
a simple solution by neglecting convection c = c| 
altogether whereas Bruckenstein and Prager [12] 
assumed a linear concentration profile within a c = c| 
time-dependent mass transfer boundary layer in c = 0 
their study. For pulsed current electrolysis, an 
approximate solution on mass transfer has been 
reported by Cheh [2] who used a diffusion model c = c .  
originally studied by Rosebrugh and Miller [13] 
and by Pleskov and Filinovskii [14] who once 
again ignored the highest-order convective term in 
their work. Most recently, a numerical solution 
has been derived by Viswanathan et al. [15]. 

In this paper, a numerical solution for mass 
transfer to a RDE under pulsed potential 
conditions is presented. Results are compared with 
approximate solutions from the literature for the 
special case of applying a step potential. Also, the 
numerical solution for the pulsed current case by 
Viswanathan et  al. [15] is used to compare with 
available solutions for the special case of  a step ~- 
current. 

2. Theoretical 

2.1. Pulsed potent ia l  

It is assumed that a RDE is situated in an electro- 
lyte medium of large extent and the electrode is 
rotating at a constant velocity. The electrode 
:reaction is assumed to be reversible. The radius of  
the RDE and the distance between the RDE and �9 
the counter electrode are both large compared to 
the thickness of the Nernst diffusion layer. The 
number of coulombs passed during an experiment 
is assumed to be so small that the depletion of 
the reacting species in the electrolyte can be 
neglected. An excess of supporting electrolyte is 
present so that electrical migration and non- 
faradaic effects are negligible. Finally, the Schmidt 

number of the system is much larger than unity 
so that the diffusion layer lies well within the 
momentum boundary layer. Under these 
conditions, the concentration of the reacting 
species is described by the following convective 
diffusion equation 

ac ~c ~ e 
~t + vz -~z = D ~z 2 

with the following boundary conditions for the 
case of applying a pulsed potential 

(1) 

at t = 0 and all z (2) 

at t > 0  and z ~ r (3) 

a t z = O a n d O K t < ~ . t x , t 2  < t ~< t3,etc. 

(4) 
a t z = 0 a n d &  <t<<- t2 , t 3  < t < t 4 , e t c .  

(5) 
where e is the concentration of the reacting ion, 
c ,  is its concentration in the bulk of the solution, 
D is the diffusion coefficient of the ion, Vz is the 
axial component of the fluid velocity, t is time, 
z is the axial co-ordinate extending from the 
electrode surface and t n is defined in Fig. 1. Note 
that one may also consider that the applied 

ETC, 

c~ 

tl ~2 ~3 T4 ~5 ~6 T 7 
t 

ETC, 

T1 T2 4/3 ~4 ~5 "]6 ~7 "Y8 
T 

Fig. 1. Schematic diagrams of pulsed potential and surface 
concentration. 
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potential is at a certain value when t m -1 < t <. tra 

but at a different value when t m < t <~ tm+ 1 

where m is an odd number. 
The method of  solution for this problem except 

at very fast cycle times is similar to the one used 
by Viswanathan et  al. [15].  Following the same 
approach, Equations 1 -5  are first transformed 
into the following dimensionless form 

~C ~2C OC _ K~.2 _ (6) 

and 

C = 1  

C = 1  

C = 0  

C = I  

at r = 0 and all f (7) 

at r > 0 and ~" ~ oo (8) 

at ~" = 0 and 0 < 7---< r l ,  72 < 7--.< 73, etc. 

(9) 
at f = 0 and 71 < r ~ < 7 2 , r 3  < r < ~ r 4 , e t c .  

(10) 

with the dimensionless variables defmed by 

c Vz 6a 
C = - -  K -  (11) 

c= '  ~'2D 

D t  z Dtn 
r - 6 2 ,  ~ - 6 '  7n - 62 (12) 

where 6 is the thickness o f  the Nemst diffusion 
layer. 

By substituting the Levich expressions [16] for 
v z and 6 for the infinite (Sc) condition, K turns 
out to be a constant, 2.136, independent of  the 
physical properties of  the electrolyte as well as the 
rotation speed. 

For numerical solution in terms of  a series, the 
boundary condition, Equation 8, may be modified 
as follows 

C = I  at r > 0  and ~" = 2. (13) 

The justification o f  this modification was suggested 
by Riddiford [17] and its effect on the solution 
of  the problem has been discussed by Viswanathan 
et al. [15].  

A series solution to Equation 6 is assumed as 
follows: 

C(r ,  ~) = ~ C n R n ( f )  exp (--X2n,r) (14) 
r l = 0  

where X,h is the eigenvalue and C,  is the coef- 
ficient of  the series. The solution corresponding to 

X, h = 0 satisfies the inhomogeneous part of  the 
boundary conditions, Equations 10 and 13. It is 
derived to be 

Ro = [ exp ( - - K a a / 3 ) d a  (15) 

0 

where a is a dummy variable. This equation 
represents physically the steady-state d.c. solution. 

The solution corresponding to X,h 4= 0 is 
obtained by using a fourth-order Runge-Kut ta  
method. Details o f  the calculation are presented 
in the Appendix. The first twenty coefficients and 
eigenvalues are listed in Table 1. 

From a knowledge of  these coefficients and 
eigenvalues, the flux of  the reacting species at the 
electrode surface under a periodic-state condition 
can be calculated from the following equations: 

During the rm -x < r <~ rm period 

i _ _  

(/de)X 1 + ~ C~1 exp [-- X~, (r -- rm _,)]  
r l = l  

x { 1 - - e x p  [--X~1(7 e - r 1 ) ] }  (16) 
[ 1  - -  exp (-- X~I re)] 

During the rm < r ~ rm + 1 period 

Table 1. Eigenvalues and coefficients o f  
Equation 16 

n Cnl Xn 1 

1 1.023 09 2-406 24 
2 0-890 80 3.881 58 
3 0-907 75 5-285 47 
4 0.930 54 6.730 62 
5 0"960 32 8.216 74 
6 0"963 69 9-728 77 
7 0-981 56 11.256 95 
8 0.976 95 12-795 43 
9 0.990 81 14.341~06 

10 0.983 28 15-89160 
11 0-995 60 17.445 i85 
12 0"986 80 19.00280 
13 0.998 44 20.562 06 
14 0.989 01 22.122 92 
15 1"000 33 23.685 15 
16 0"990 60 25.248 53 
17 1-001 79 26.812 85 
18 0.991 93 28.37800 
19 1.003 12 29.943189 
20 0.993 27 31-510140 

J 
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i 

(/de)l 
Cnl exp [ -  X=., (r - r , .  )] 

n = l  

[1 -- exp (-- X=n rl)]  
x 

[1 -- exp (-- X~I re)] 

where i is the instantaneous current density, (idc)l 
is the d.c. limiting current density and r e is the 
dimensionless cycle time. 

Although Equations 16 and 17 are in principle 
applicable to all cycle times, the slow convergence 
at values of ( r  -- r m )  or (r  -- rm - x )  less than 0"01 
makes them impractical for fast cycles. A review 
of the physical phenomena shows that the effect 
of convection diminishes rapidly at fast pulses. 
Consequently, a simple diffusion model which is 
based on dropping the convective term 
[-- K~ "2 (aC/a~-)] in Equation 6 and replacing the 
condition f -+ oo by ~" = 8 in Equation 8 should be 
applicable. The solution based on the simple dif- 
fusion model is available from Carslaw and 
Jaeger [18]" 

During the rm -1 < r <<. Trn period 

i - 1 + 2  ~ exp [ - / 3 ~ ( r - r , , , _ , ) ]  
(/de)l n=l 

{1 -- exp [--/32n(% -- rl)]  } 
X 

[1 -- exp (--/3=nre)] 

During the rm < r <. rm + 1 period 

i = --2 ~ exp [ - - f n ( r - - r m )  ] 
( / d c ) l  n = l  

[t -- exp (-- = /3.r,)] 
X 

[1 -- exp (--/3=nre)] 

where t3, = nrr. 

A comparison between Equations 16 and 17, 
and Equations 18 and 19 showed that at 
(r - rm-1) or (r  - zm)  = 0"01 the difference of 
i/(iae)l calculated by the two sets of equations is 
less than 1% for all possible combinations of rl 
and re. Consequently, it is recommended that 
Equations 16 and 17 be used for (z --rm-1) or 
(r -- rm) ~> 0"01 whereas Equations 18 and 19 be 
used for (r  -- rm -1 ) or (r -- rm)  < 0"01. 

Two interesting conclusions are worth noting 
here. Firstly as shown by Equations 18 and 19, 
during the step change of potential, the sign of 
the current reverses. Secondly, the ratio of the 
overall electrolysis rate by pulsed potential to the 

(17) 

(18) 

(19) 

(20) 

d.c. electrolysis rate is equal to the duty cycle of 
the pulse. In other words, from Equations 18 and 
19, one may show that 

Trrl 

(ide)l re Eq. 18 
r - 1  

+ [" dr = - -  
g q .  1 9  T e 

rrn (21) 

2.2. Step  potent ial  

We now proceed to compare the present numerical 
solution to the approximate solutions from the 
literature for the case of applying a step potential. 
Equations used in this calculation are summarized 
as follows: 

Present solution 

i 
1 + L C. 1 exp (-- X~, r) (22) 

(/dc)l - - = 1  

Filinovskii and Kiryanov's solution [10] 

i _ exp (-- 3.1r) + 0-94 erf(3.1r) in  (23) 
(idoh 0rr) "2 

Buck and Keller's solution [11] 

i __ '~ 

(ide)l 1 + 2  n=*Z exp( - n=rr2r) (24) 

Bruckenstein and Prager's solution [12] 

1 (1"8049t= [ 11n [(1 - -Ra)  ] 
r = ~ \ 1 " - ~ 1  [2- (1 - - R )  3 

~" 1 + ~/3 [ - ~ -  t a n - [  {2R  + 11] / (as) 

where 
R = qde)l/ i  (26) 

A numerical comparison for the four solutions is 
shown in Table 2. Filinovskii and Kiryanov's result 
shows good agreement with the numerical solution 
up to r = 0-5. It begins to deteriorate at large r 
values due to the increasing importance of con- 
vection. Buck and Keller's solution consistently 
underestimates the ratio of i /qdc)l  although the 
accuracy of the solution improves at small values 
of r. This is because of the diminishing role of 
convection at short cycle times. Bruckenstein and 
Prager's solution shows very good agreement with 
the numerical/solution. The discrepancy is less than 
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Table 2. Comparison between three approximate solutions and the present results for current transients 
at different values o f  time 

i/(iaOi 

Filinovskii Buck and Bruckenstein 
r Present results 

and Kiryanov [10] Keller [11] and Prager [12] 

0.02 4.000 4"008 3.989 3.972 
0.04 2.842 2-851 2.821 2'825 
0-06 2.335 2-343 2.303 2.324 
0.08 2.038 2-044 1.995 2.030 
0-10 1.838 1.843 1.784 1.834 
0.20 1-369 1-369 1.279 1-375 
0.40 1.103 1.090 1 '039 1.115 
0.60 1-032 1.003 1'005 1.041 
0'80 1.010 0.968 1.001 1.016 
1.00 1-003 0.953 1.000 1'006 

1-2% for the range of r values used in the calcu- 
lation. Experimental verification for the step 
potential case was reported by Bruckenstein and 
Prager [12]. 

2.3. Step  current 

A numerical solution for applying a pulsed current 
to a RDE system has recently been presented by 
Viswanathan et al. [15]. We now present a com- 
parison of the numerical solutions to two approxi- 
mate solutions from the literature for the special 
case of applying a step current to the RDE. When 
a step current is applied, both the concentration 
of the reacting species at the surface and the 
electrode potential changes with time. An import- 
ant quantity to characterize mass transfer is the 
transition time ttr which is defined as the time 
elapsed to when the concentration of the reacting 
species becomes zero at the electrode-solution 
interface. The numerical comparison is made for 
the magnitude of the step current based on differ- 
ent solutions for a ~ven transition time. Equations 
used in this calculation are summarized as follows: 

Viswanathan et  al.'s solution [15] 

[ ] tstep _ 1 - -  ~ C,2 exp( - -X~r t~)  
(ide)l n = 1 

(27) 

where Cn2 and X,: are the coefficients and eigen- 
values of the series in Equation 26. Their values 
have been tabulated by Viswanathan et  al. [15]. 

Cheh's solution [2] 

�9 [ -1 
tst~p - 1 - - 2  ~ exp(- - / J~ ' t r ) ]  

( ao)l ~176 ] 
where 

(28) 

/~n = (2n -- 1)7r/2 (29) 

Pleskov and Filinovskii's solution [14] 

Zstep _ [1"07 erf(3"b-tr) 1/2 
(idc)l (30) 

--0"73 exp (-- l'65Tt~ ) erf(1-45rt~) 1/2 ] -1 

A numerical comparison between the three models 
is shown in Table 3. Both approximate solutions 
agree well with the numerical solution at short 
transition times�9 The maximum discrepancy 
between Cheh's solution and the numerical 
solution is less than 4% for all values of ~tr whereas 
that between Pleskov and Filinovskii's solution 
and the numerical solution is less than 1% for 
~'t~ < 0-5. It is worth noting here that at very short 
transition times, Equation 28 reduces to 

nFc= (1rD) 1~2 
,x,'2 (31) /step 2 Ltr 

which is the well-known Sand equation. Kriglikov 
et al. [19, 20] measured transition times under 
galvanostatic conditions at a rotating Pt electrode 
in alkaline K3 Fe(CN)6 solution and found a linear 
relation between i versus t~ 1/2 for small values of  
time in accordance with Equation 31. For large 
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Table 3. Comparison between two approximate solutions and the present results 
for the magnitude of  step current at different values of  transition time 

istep/ (idc)! 

Pleskov and 
rtr Present results Cheh [ 2 ] Filinovskii [ 14 ] 

0.001 27.990 28.025 27.891 
0.005 12.532 12.533 12.477 
0.010 8-864 8-862 8.826 
0.050 3.974 3.963 3.961 
0.100 2.824 2-803 2-816 
0.200 2-024 1-984 2-019 
0.400 1.488 1.433 1-480 
0'600 1-276 1.226 1-263 
0.800 1-167 1.127 1.147 
1.000 1.105 1-074 1"077 
1.200 1-067 1-044 1-032 
1.400 1-043 1.026 1-003 
1'600 1.028 1-016 0-983 
1.800 1-019 1-010 0-969 
2.000 1-012 1.006 0-959 

values of  ttr , the transition time was found to 
depend on the rotation speed. 

3. Conclusions 

A numerical solution was obtained for mass 
transfer to a RDE system under pulsed potential 
conditions. A quantitative comparison was made 
between the present solution and a number o f  
approximate solutions for the special case of  
applying a step potential. Also, a numerical sol- 
ution for calculating the magnitude o f  the step 
current as a function of  transition time was 
presented. Results were compared quantitatively 
with two approximate solutions. 

Appendix 

Solution for  X~, > 0 

Substitution o f  Equation 14 into Equation 6 yields 

d2Rn + d'Rnq-~.2nR n = 0. (A1) 
d~.~ Kf 2 

The boundary conditions are 

Rn = 0 at ~'= 0 (A2) 

Rn = 0 at ~" = 2 (A3) 
Let 

t~n(f ) = Rn e K~'3/6 (A4) 
Kn 

where 

K~ = d~- ~-=o" (A5) 

Introduction of  Equation A4 into Equation A1 
gives 

d2 "+ ( -1 /C2 4  --4-- - K ~ ' -  ]fin = 0 (A6) 

and the boundary conditions are 

f n = 0  a t e ' = 0  (A7) 

ff~ = 0 at ~" = 2 (A8) 

d~n 
= 1 at ~" = 0 (A9) 

df 

The eigenvalue Xnl is obtained by solving 
Equation A6 subject to all the boundary 
conditions by a trial-and-error fourth order 
Runge-Kutta method. The concentration profile 
is then given by 
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= f e -K~3/3 dc~ C(r, D .J 
o (AIO) 

q- ~ Cn 1 t~n(f) e -Kr3/6 e-h~lr 
r t = l  

where 

Cnl = CnKn. ( A l l )  

The coefficient Cn, is de termined by  using the 
following relation. 

- -  de -Kc~3/3 d~ fin(f) eKe3~6 df 
0 0 

Cn l = 2 

f ~2n(f) df 

u (A12) 
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